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Scheduling Sporadic and Aperiodic Events 
in a Hard Real-Time System 

Abstract: A real-time system consists of both aperiodic and periodic tasks. Peri- 
odic tasks have regular arrival times and hard deadlines. Aperiodic tasks have 
irregular arrival times and either soft or hard deadlines. In this paper, we present 
a new algorithm, the Sporadic Server algorithm, that greatly improves response 
times for soft-deadline aperiodic tasks and can guarantee hard deadlines for both 
periodic and aperiodic tasks. The operation of the Sporadic Server algorithm, its 
performance, and schedulability analysis are discussed and compared with previ- 
ous, published aperiodic service algorithms. 

1. Introduction: The Real-Time Scheduling Problem 

Real-time systems are used to control physical processes that range in complexity from 
automobile ignition systems to controllers for flight systems and nuclear power plants. In 
these systems, the correctness of system functions depends upon not only the results of 
computation but also the times at which results are produced. 

A real-time task is generally placed into one of four categories based upon its arrival pattern 
and its deadline. If meeting a given task's deadline is critical to the system's operation, then 
the task's deadline is considered to be hard. If it is desirable to meet a task's deadline but 
occasionally missing the deadline can be tolerated, then the deadline is considered to be 
soft. Tasks with regular arrival times are called periodic tasks. A common use of periodic 
tasks is to process sensor data and update the current state of the real-time system on a 
regular basis. Periodic tasks, typically used in control and signal processing applications, 
have hard deadlines. Tasks with irregular arrival times are aperiodic tasks. Aperiodic tasks 
are used to handle the processing requirements of random events such as operator re- 
quests. An aperiodic task typically has a soft deadline. Aperiodic tasks that have hard 
deadlines are called sporadic tasks. We assume that each task has a known worst case 
execution time. In summary, we have: 

• Hard and soft deadline periodic tasks. A periodic task has a regular inter- 
arrival time equal to its period and a deadline that coincides with the end of its 
current period. Periodic tasks usually have hard deadlines, but in some ap- 
plications the deadlines can be soft. 

• Soft deadline aperiodic tasks. An aperiodic task is a stream of jobs arriving 
at irregular intervals. Soft deadline aperiodic tasks typically require a fast 
average response time. 

• Sporadic tasks. A sporadic task is an aperiodic task with a hard deadline and 
a minimum interarrival time [6]. Note that without a minimum interarrival time 
restriction, it is impossible to guarantee that a deadline of a sporadic task would 
always be met. 
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To meet the timing constraints of the system, a scheduler must coordinate the use of all 
system resources using a set of well understood real-time scheduling algorithms that meet 
the following objectives: 

• Guarantee that tasks with hard timing constraints will always meet their dead- 
lines. 

• Attain a high degree of schedulable utilization for hard deadline tasks (periodic 
and sporadic tasks). Schedulable utilization is the degree of resource utilization 
at or below which all hard deadlines can be guaranteed. The schedulable utili- 
zation attainable by an algorithm is a measure of the algorithm's utility: the 
higher the schedulable utilization, the more applicable the algorithm is for a 
range of real-time systems. 

• Provide fast average response times for tasks with soft deadlines (aperiodic 
tasks). 

• Ensure scheduling stability under transient overload. In some applications, 
such as radar tracking, an overload situation can develop in which the compu- 
tation requirements of the system exceed the schedulable resource utilization. 
A scheduler is said to be stable if during overload it can guarantee the dead- 
lines of critical tasks even though it is impossible to meet all task deadlines. 

The quality of a scheduling algorithm for real-time systems is judged by how well the algo- 
rithm meets these objectives. 

This paper develops advanced algorithms to schedule aperiodic tasks. For soft deadline 
aperiodic tasks, the goal is to provide fast average response times. For hard deadline 
aperiodic tasks (sporadic tasks), the goal is to guarantee that their deadlines will always be 
met. The new algorithms presented herein meet both of these goals and are still able to 
guarantee the deadlines of hard deadline periodic tasks. For simplicity, we assume that 
periodic tasks have hard deadlines and constant execution times.1 In Chapter 2 we will 
review related work on scheduling periodic and aperiodic tasks. Chapter 3 introduces the 
Sporadic Server (SS) algorithm for scheduling aperiodic tasks and illustrates its operation 
with several examples. This section also addresses the schedulability issues of the SS al- 
gorithm, the interaction of the SS algorithm and priority inheritance protocols, and compares 
the performance of the SS algorithm with previous algorithms. Chapter 4 addresses the 
scheduling of sporadic tasks and discusses the use of a deadline monotonic priority assign- 
ment for scheduling sporadic tasks that have short deadlines and long interarrival times. 
Finally, Chapter 5 presents a summary and conclusions. 

1 Readers who are interested in the subject of taking advantage of the stochastic execution time of periodic 
tasks are referred to [10]. 
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2. Background and Related Work 

2.1. Scheduling Periodic Tasks 
A well understood scheduling algorithm for guaranteeing the hard deadlines of periodic 
tasks in a multiprogrammed real-time system is Liu and Layland's rate monotonic schedul- 
ing algorithm [5]. Under this algorithm, fixed priorities are assigned to tasks based upon the 
rate of their requests (i.e., a task with a relatively short period is given a relatively high 
priority). Liu and Layland proved that this algorithm is the optimum static preemptive 
scheduling algorithm for periodic tasks with hard deadlines. The algorithm guarantees that 
n periodic tasks can always be guaranteed to meet their deadlines if the resource utilization 
of the tasks is less than n(21/n-1), which converges to In 2 (= 69%) for large n. The rate 
monotonic algorithm can be used as a basis to develop a family of scheduling algorithms 
that address a wide range of practical problems. The rate monotonic algorithm has the fol- 
lowing favorable qualities for scheduling real-time systems: 

• High schedulable utilization. Although Liu and Layland show a low schedul- 
ing bound for the rate monotonic algorithm, this bound is pessimistic and 
represents the absolute worst case conditions.    Lehoczky, Sha, and Ding 
[2] performed an exact characterization and stochastic analysis for a randomly 

generated set of periodic tasks scheduled by the rate monotonic algorithm and 
found that the average scheduling bound is usually much better than the worst 
case. They concluded that a good approximation to the threshold of 
schedulability for the rate monotonic algorithm is 88%. In fact, with the period 
transformation method, the utilization threshold can, in principle, be arbitrarily 
close to 100% [9]. As an example of the high degree of schedulable utilization 
attainable with the rate monotonic algorithm, a schedulable utilization level of 
99% was achieved for the Navy's Inertial Navigation System [1]. 

• Stability under transient overload. Another concern for scheduling algo- 
rithms is transient overload, the case where stochastic execution times can lead 
to a desired utilization greater than the schedulable utilization bound of the task 
set. To handle transient overloads, Sha, Lehoczky, and Rajkumar describe a 
period transformation method for the rate monotonic algorithm that can 
guarantee that the deadlines of critical tasks can be met [7]. 

• Aperiodic tasks. A real-time system often has both periodic and aperiodic 
tasks. Lehoczky, Sha and Strosnider developed the Deferrable Server algo- 
rithm [3], which is compatible with the rate monotonic scheduling algorithm and 
provides a greatly improved average response time for soft deadline aperiodic 
tasks over polling or background service algorithms while still guaranteeing the 
deadlines of periodic tasks. 

• Resource sharing. Although determining the schedulability of a set of periodic 
tasks that use semaphores to enforce mutual exclusion has been shown to be 
NP-hard [6], Sha, Rajkumar, and Lehoczky [8] have developed a priority in- 
heritance protocol and derived a set of sufficient conditions under which a set of 
periodic tasks that share resources using this protocol can be scheduled using 
the rate monotonic algorithm. 

• Low scheduling overhead.   Since the rate monotonic algorithm assigns a 
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static priority to each periodic task, the selection of which task to run is a simple 
function. Scheduling algorithms that dynamically assign priorities, may incur a 
larger overhead because task priorities have to be adjusted in addition to se- 
lecting the highest priority task to execute. 

As such, we will use the rate monotonic algorithm as the basis for scheduling soft deadline 
aperiodic tasks and sporadic tasks. In the next section, we will review the related work on 

aperiodic scheduling. 

2.2. Scheduling Aperiodic Tasks 

The scheduling problem for aperiodic tasks is very different from the scheduling problem for 
periodic tasks. Scheduling algorithms for aperiodic tasks must be able to guarantee the 
deadlines for hard deadline aperiodic tasks and provide good average response times for 
soft deadline aperiodic tasks even though the occurrence of the aperiodic requests are non- 
deterministic. The aperiodic scheduling algorithm must also accomplish these goals without 
compromising the hard deadlines of the periodic tasks. 

Two common approaches for servicing soft deadline aperiodic requests are background 
processing and polling tasks. Background servicing of aperiodic requests occurs whenever 
the processor is idle (i.e., not executing any periodic tasks and no periodic tasks are 
pending). If the load of the periodic task set is high, then utilization left for background ser- 
vice is low, and background service opportunities are relatively infrequent. Polling consists 
of creating a periodic task for servicing aperiodic requests. At regular intervals, the polling 
task is started and services any pending aperiodic requests. However, if no aperiodic re- 
quests are pending, the polling task suspends itself until its next period, and the time 
originally allocated for aperiodic service is not preserved for aperiodic execution but is in- 

stead used by periodic tasks. Note that if an aperiodic request occurs just after the polling 

task has suspended, the aperiodic request must wait until the beginning of the next polling 
task period or until background processing resumes before being serviced. Even though 

polling tasks and background processing can provide time for servicing aperiodic requests, 
they have the drawback that the average wait and response times for these algorithms can 
be long, especially for background processing. 

Figures 2-2 and 2-3 illustrate the operation of background and polling aperiodic service 
using the periodic task set presented in Figure 2-1. The rate monotonic algorithm is used to 
assign priorities to the periodic tasks yielding a higher priority for task A. In each of these 
examples, periodic tasks A and B both become ready to execute at time = 0. Figures 2-2 
and 2-3 show the task execution from time • 0 until time = 20. In each of these examples 
two aperiodic requests occur: the first at time = 5 and the second at time = 12. 

The response time performance of background service for the aperiodic requests shown in 

Figure 2-2 is poor. Since background service only occurs when the resource is idle, 

aperiodic service cannot begin until time = 16. The response time of the two aperiodic re- 
quests are 12 and 6 time units respectively, even though both requests each need only 1 

unit of time to complete. 
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Periodic Tasks: 

Execution Time Period Priority 

sS\ Task A 4 10 High 

^ w Task B 8 20 Low 

Figure 2-1:   Periodic Task Set for Figures 2-2, 2-3, 2-4, and 2-5 

Task 
Execution 

Aperiodic 
Request #2 

10      12 16 18       20 

Figure 2-2:   Background Aperiodic Service Example 

The response time performance of polling service for the aperiodic requests shown in Figure 
2-3 is better than background service for the first request but not for the second. For this 
example, a polling server is created with an execution time of 1 time unit and a period of 5 
time units which, using the rate monotonic algorithm, makes the polling server the highest 
priority task. The polling server's first period begins at time = 0. The lower part of Figure 
2-3 shows the capacity (available execution time) of the polling server as a function of time. 
As can be seen from the upward arrow at time = 0 on the capacity graph, the execution time 
of the polling server is discarded during its first period because no aperiodic requests are 
pending. The beginning of the second polling period coincides with the first aperiodic re- 
quest and, as such, the aperiodic request receives immediate service. However, the second 
aperiodic request misses the third polling period (time = 10) and must wait until the fourth 
polling period (time = 15) before being serviced. Also note, that since the second aperiodic 
request only needs half of the polling server's capacity, the remaining half is discarded be- 
cause no other aperiodic tasks are pending. Thus, this example demonstrates how polling 
can provide an improvement in aperiodic response time performance over background ser- 
vice but is not always able to provide immediate service for aperiodic requests. 
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Task 
Execution 

Aperiodic 
Request #2 

10      12 16       18      20 

Polling S«rv«r    , 0. 
Capacity 

I       I n ' i • I • i • i" 
0        2        4 6 8        10      12      14      16       18      20 

Polling Server:      Execution Time * 1,     Period « 5 

Figure 2-3:   Polling Aperiodic Service Example 

The Priority Exchange (PE) and Deferrable Server (DS) algorithms, introduced by Lehoczky, 
Sha, and Strosnider in [3], overcome the drawbacks associated with polling and background 
servicing of aperiodic requests. As with polling, the PE and DS algorithms create a periodic 
task (usually of a high priority) for servicing aperiodic requests. However, unlike polling, 
these algorithms will preserve the execution time allocated for aperiodic service if, upon the 
invocation of the server task, no aperiodic requests are pending. These algorithms can yield 
improved average response times for aperiodic requests because of their ability to provide 
immediate service for aperiodic tasks. In particular, the DS algorithm has been shown 
capable of providing an order of magnitude improvement in the responsiveness of asynchro- 
nous class messages for real-time token rings [11]. These algorithms are called bandwidth 
preserving algorithms because they provide a mechanism for preserving the resource band- 
width allocated for aperiodic service if, upon becoming available, the bandwidth is not imme- 
diately needed. The PE and DS algorithms differ in the manner in which they preserve their 
high priority execution time. 

The DS algorithm maintains its aperiodic execution time for the duration of the server's 
period. Thus, aperiodic requests can be serviced at the server's high priority at anytime as 
long as the server's execution time for the current period has not been exhausted. At the 
beginning of the period of the DS, the server's high priority execution time is replenished to 
its full capacity. 

The DS algorithm's method of bandwidth preservation is illustrated in Figure 2-4 using the 
periodic task set of Figure 2-1.   For this example, a high priority server is created with an 
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execution time of 0.8 time units and a period of 5 time units. At time = 0, the server's execu- 
tion time is brought to its full capacity. This capacity is preserved until the first aperiodic 
request occurs at time • 5, at which point it is immediately serviced, exhausting the server's 
capacity by time = 6. At time = 10, the beginning of the third server period, the server's 
execution time is brought to its full capacity. At time = 12, the second aperiodic request 
occurs and is immediately serviced. Notice that although the second aperiodic request only 
consumes half the server's execution time, the remaining capacity is preserved, not dis- 
carded as in the polling example. Thus, the DS algorithm can provide better aperiodic 
responsiveness than polling because it preserves its execution time until it is needed by an 
aperiodic task. 

Aperiodic 
Request #2 

Task 
Execution 

O 2 4 6 8        10       12       14       16        18      20 

DeferrableServer    1-° 
Capacity 

o.o 

0        2        4 6 8        10      12      14      16       18      20 

Deferrable Server:      Execution Time = 0.8,     Period « 5 

Figure 2-4:   Deferrable Server Example 

Unlike the DS algorithm, the PE algorithm preserves its high priority execution time by ex- 
changing it for the execution time of a lower priority periodic task. At the beginning of the 
PE server's period, the server's high priority execution time is replenished to its full capacity. 
If the highest priority execution time available is aperiodic time (as is the case at the begin- 
ning of the PE server's period) and aperiodic tasks are pending, then the aperiodic tasks are 
serviced. Otherwise, the highest priority pending periodic task is chosen for execution and a 
priority exchange occurs. The priority exchange converts the high priority aperiodic time to 
aperiodic time at the assigned priority level of the periodic task. When a priority exchange 
occurs, the periodic task executes at the priority level of the higher priority aperiodic time, 
and aperiodic time is accumulated at the priority level of the periodic task. Thus, the peri- 
odic task advances its execution time, and the aperiodic time is not lost but preserved, albeit 
at a lower priority.   Priority exchanges will continue until either the high priority aperiodic 
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time is exhausted or an aperiodic request occurs in which case the aperiodic time is used to 
service the aperiodic request. Note that this exchanging of high priority aperiodic time for 
low priority periodic time continues until either the aperiodic time is used for aperiodic ser- 
vice or until the aperiodic time is degraded to the priority level of background processing 
(this complete degradation will occur only when no aperiodic requests arrive early enough to 
use the aperiodic time). Also, since the objective of the PE algorithm is to provide a low 
average response time for aperiodic requests, aperiodic requests win all priority ties. At all 
times the PE algorithm uses the highest priority execution time available to service either 
periodic or aperiodic tasks. 

The PE algorithm's method of bandwidth preservation is demonstrated in Figure 2-5 using 
the periodic task set of Figure 2-1. In this example, a high priority PE server is created with 
an execution time of 1 time unit and a period of 5 time units. Since the PE algorithm must 
manage aperiodic time across all priority levels, the capacity of the PE server as a function 
of time consists of three graphs: one for each priority level. The PE server's priority is prior- 
ity level 1, which corresponds to the highest priority level, followed by priority 2 for periodic 
task A and priority 3 for periodic task B. At time = 0, the PE server is brought to its full 
capacity but no aperiodic tasks are pending and a priority exchange occurs between prior- 
ities 1 and 2. The PE server gains aperiodic time at priority 2, and periodic task A executes 
at priority 1. At time = 4, task A completes and task B begins. Since no aperiodic tasks are 
pending, another exchange takes place between priority 2 and priority 3. At time • 5, the 
server's execution time at priority 1 is brought to its full capacity and is used to provide im- 
mediate service for the first aperiodic request. At time = 10, the server's priority 1 execution 
time is brought to full capacity and is then exchanged down to priority 2. At time = 12, the 
server's execution time at priority 2 is used to provide immediate service for the second 
aperiodic request. At time = 14.5, the remaining priority 2 execution time is exchanged 
down to priority 3. At time = 15, the newly replenished server time at priority 1 is exchanged 
down to priority 3. Finally, at time = 17.5, the remaining PE server execution time at priority 
3 is discarded because no tasks, periodic or aperiodic, are pending. Thus, the PE algorithm 
can also provide improved response times for aperiodic tasks compared to the polling algo- 
rithm. 

The PE and DS algorithms differ in their complexity and in their effect upon the 
schedulability bound for periodic tasks. The DS algorithm is a much simpler algorithm to 
implement than the PE algorithm, because the DS algorithm always maintains its high prior- 
ity execution time at its original priority level and never exchanges its execution time with 
lower priority levels as does the PE algorithm. However, the DS algorithm does pay 
schedulability penalty (in terms of a lower schedulable utilization bound) for its simplicity. 
Both algorithms require that a certain resource utilization be reserved for high priority 
aperiodic service. We refer to this utilization as the server size, Us, which is the ratio of the 
server's execution time to the server's period. The server size and type (i.e., PE or DS) 
determine the scheduling bound for the periodic tasks, Up, which is the highest periodic utili- 
zation for which the rate monotonic algorithm can always schedule the periodic tasks. Be- 
low are the equations developed in [3] for Up in terms of Us as the number of periodic tasks 
approaches infinity for the PE and DS algorithms: 
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Task 
Execution 

Aperiodic 
Request #1 

I Aperiodic 
Request #2 

I      I 
^am'mi^ma 

rT-r i  i" r f  i T i }'( | "i' |  i 
0        2        4 6 6        10      12      14      16       18      20 

Priority Exchange Server:      Execution Time = 1,     Period = 5 

Priority Exchange 
Server Capacity 

Level #1 

Level #2 

Level #3 

p i' i n ' i' n i' i n • i' 

i_ 

0 2 4 6 8        10       12       14       16        18      20 

0 2 4 6 8        10       12       14       16        18      20 

Figure 2-5:   Priority Exchange Server Example 

PE:     UP=  lnD7T 
U.+2 

DS:       Un=   In—?— 
P 2US+1 

These equations show that for a given server size, U8 (0 < U, < 1). the periodic 
schedulability bound, Up, for the DS algorithm is lower than it is for the PE algorithm. These 
equations also imply that for a given periodic load, the server size, U8, for the DS algorithm 
is smaller than that for the PE algorithm. For example, with Up = 60%, the server size for 
the PE algorithm is 10% compared to a server size for the DS algorithm of 7%. 

The focus of this paper is to develop a general algorithm for scheduling both soft and hard 
deadline aperiodic tasks.   Such an algorithm should provide a responsiveness comparable 
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to that attainable with the PE and DS algorithms for soft deadline aperiodic tasks. For hard 
deadline aperiodic tasks, the algorithm should provide a general technique for allocating 
resource utilization to guarantee that the deadline will always be met. 

By comparing the PE and DS algorithms, we can identify the relative merits of each. The 
advantage of the DS algorithm over the PE algorithm is that it is conceptually much simpler, 
and thus easier to implement. The PE algorithm must manage aperiodic time across all 
priority levels in the system, whereas the DS algorithm maintains its execution time at its 
original priority level. The simple bandwidth preservation technique of the DS algorithm also 
implies that, on average, the priority of the server's execution time will be higher than it 
would be for an equivalents sized PE server because the DS algorithm preserves its high 
priority execution time at its original priority level for the duration of its period. In contrast, 
the PE algorithm must either use its high priority execution time for aperiodic service or 
trade it for lower priority periodic time. However, the PE algorithm has a server size advan- 
tage over the DS algorithm. This advantage of the PE algorithm is even greater when multi- 
ple servers are executing at different priority levels. A better algorithm for soft deadline 
aperiodic tasks would have the advantages of both these algorithms while overcoming their 
limitations. Chapter 3 describes and gives examples of such an algorithm, the Sporadic 
Server (SS) algorithm. Section 3.5 presents the results of a simulation study that compares 
the response time performance of the Polling, DS, PE, and SS algorithms. 

One important class of aperiodic tasks that is not generally supported by previous aperiodic 
service algorithms consists of aperiodic tasks with hard deadlines. To guarantee hard dead- 
lines for aperiodic tasks, a high priority server can be created with enough execution time to 
guarantee that an aperiodic task can meet a hard deadline. However, a minimum inter- 
arrival time restriction must be placed upon the aperiodic task to insure that the server will 
always have sufficient execution time to meet the aperiodic task's deadline. This minimum 
interarrival time for the aperiodic task must be equal to or greater than the period of its ser- 
ver task. As long as the aperiodic task does not request service more frequently than the 
minimum interarrival time, its hard deadline can be guaranteed. The SS algorithm can be 
used to provide such a guarantee but only if the aperiodic task's deadline is equal to or 
greater than its minimum interarrival time. For the cases when the deadline is shorter than 
the minimum interarrival time, a priority assignment that is based upon the deadline of the 
aperiodic task rather than its minimum interarrival time is necessary. This is referred to as a 
deadline monotonic priority assignment and requires a different schedulability analysis than 
that used for a rate monotonic priority assignment. The necessity of deadline monotonic 
priority assignment for hard deadline aperiodic tasks and the required schedulability analysis 
will be discussed in Chapter 4. 
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3. Scheduling Soft Deadline Aperiodic Tasks 

In this Chapter, we investigate the scheduling of soft deadline aperiodic tasks. Our objective 
is to provide fast average response times for aperiodic tasks while guaranteeing the hard 
deadlines of periodic tasks. In this Chapter, we introduce a new algorithm, determine its 
schedulability bound, and compare its response time performance to previous aperiodic ser- 
vice algorithms. 

3.1. The Sporadic Server Algorithm 

Although both the DS and PE algorithms have been shown to provide good average re- 
sponse times for aperiodic tasks [3], these algorithms can be improved in several ways. 
The DS and PE algorithms have comparable aperiodic response time performance, but 
each algorithm has advantages over the other, as was discussed in Section 2.2. The ad- 
vantage of the DS algorithm over the PE algorithm is that the DS algorithm always maintains 
its high priority server execution time at its original priority level. As such, the DS algorithm 
has a much simpler implementation than the PE algorithm because the DS algorithm does 
not have to manage the exchanging of aperiodic execution time between priority levels as is 
necessary with the PE algorithm. However, the PE algorithm has the advantage of a larger 
server size than the DS algorithm. A better algorithm would have an aperiodic response 
time performance comparable to the DS and PE algorithms, the low implementation com- 
plexity of the DS algorithm, and the larger server size of the PE algorithm. The Sporadic 
Server (SS) algorithm has these qualities. 

The SS algorithm, like the DS and PE algorithms, creates a high priority task for servicing 
aperiodic tasks. The SS algorithm preserves its server execution time at its high priority 
level until an aperiodic request occurs. The SS algorithm differs from the DS and PE algo- 
rithms in the way it replenishes its server execution time. The DS and PE algorithms period- 
ically replenish their server execution time to its full capacity. The SS algorithm only 
replenishes its server execution time after some or all of the execution time is consumed by 
aperiodic task execution. This method of replenishing server execution time sets the SS 
algorithm apart from the DS and PE algorithms and is central to understanding the operation 
of the SS algorithm. 

The following terms are used to explain the SS algorithm's method of replenishing server 
execution time: 

Ps The task priority level at which the system is currently executing. 

Pj One of the priority levels in the system.   Priority levels are consecutively 
numbered in priority order with P1 being the highest priority level and P2 

being the next highest. 

Active This term is used to describe a period of time with respect to a particular 
priority level.  A priority level, Pj( is considered to be active if the current 
priority of the system, Ps, is equal to or higher than the priority of Pj. 
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Idle This term has the opposite meaning of the term active. A priority level, Pjf 

is idle if the current priority of the system, Ps, is less than the priority of P|. 

RTj The replenishment time for priority level Pj. This is the time at which con- 
sumed execution time for the sporadic server of priority level P, will be 
replenished. 

Replenishment of consumed sporadic server execution time for a sporadic server executing 
at priority level Pj proceeds as follows: 

• If the server has execution time available, the replenishment time, RTjf is set 
when priority level Pf becomes active. The value of RTf is set equal to the cur- 
rent time plus the period of Pj. If the server capacity has been exhausted, the 
next replenishment time can be set when the server's capacity becomes non- 
zero and Pj is active. 

• Replenishment of any consumed server execution time is scheduled to occur at 
RTj, if either the priority level Pj becomes idle or the server's execution time has 
been exhausted. The amount to be replenished is equal to the amount of ser- 
ver execution time consumed. 

3.2. SS Algorithm Example 
The SS algorithm will be illustrated by comparing its operation to that of the DS and PE 
algorithms using a simple periodic task set. The task set is composed of two periodic tasks: 
x1 and x2. Task x1 has the shorter period and thus is assigned a higher priority than task x2 

by the rate monotonic algorithm. For these examples both t1 and T2 begin their periods at 
time - 0. The periodic task set parameters are: 

Task Exec Time Period Utilization 

t, 2 10 20.0% 
x2 6 14 42.9% 

For this periodic task set, the maximum server sizes were determined for the DS, PE, and 
SS algorithms. For each algorithm the server's period was chosen to be 5 units of time. 
This implies that the aperiodic server has the highest priority followed by priorities of x1 and 
x2. The initial periods for each of the algorithms begins at time = 0. The server size charac- 
teristics for the DS, PE, and SS algorithms are: 

Algorithm Exec Time Period Server Size 

DS 1.00 5 20.0% 
PE 1.33 5 26.7% 
SS 1.33 5 26.7% 

Figures 3-1, 3-2, and 3-3 show the behavior of the DS, PE, and SS algorithms for this task 
set.   The upper part of these figures shows the task execution order, and the lower part 
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shows the server capacity as a function of time. In each of these examples, two aperiodic 
requests occur. Both requests are for aperiodic tasks that require 1.33 units of execution 
time. The first aperiodic request occurs at time = 1 and the second occurs at time = 8. 

Task 
Execution 

Aperiodic 
Request #1 

Aperiodic 
Request #2 Deferrable | 

Server 

Taskl     j\g 

Task 2     <X>< 

18       20 

Deferrable 
Server 

Capacity     °-: 

ri i i r   TnT 'I'' 
6 8 10      12     .14       16       18      20 

Figure 3-1:   Deferrable Server Example 

Figure 3-1 shows the behavior of the DS algorithm for this task set. At time = 0, the server's 
execution time is brought to its full capacity of 1.00 unit and x1 begins execution. The 
server's capacity is preserved until the first aperiodic request occurs and is serviced at time 
= 1. At time = 2, the server's execution time is exhausted and x1 resumes execution. At 
time = 3, x1 completes execution and T2 begins execution. At time = 5, the server's execu- 
tion time is brought to its full capacity of 1.00 unit, and service for the first aperiodic request 
resumes, consuming 0.33 units of server execution time. At time = 5.33, the service for the 
first request is completed and x2 resumes execution. The response time for the first 
aperiodic request is 4.33 units of time. At time = 8, the second aperiodic request occurs and 
is serviced using the remaining 0.66 units of server execution time. At time = 8.66, aperiodic 
service is suspended and x2 resumes execution. At time = 10, x2 completes execution, the 
server's execution time is brought to its full capacity of 1.00 unit, and service for the second 
aperiodic request is resumed. At time = 10.66, service for the second aperiodic request is 
completed (leaving 0.33 units of server execution time) and x1 begins execution. The re- 
sponse time for the second aperiodic request is 2.66 units of time. At time = 14, x2 begins 
execution. At time = 15, the server's execution time is brought to its full capacity of 1.00 
unit. At time = 20, x2 completes execution. 

Figure 3-2 shows the behavior of the PE algorithm for this task set. Since the PE algorithm 
exchanges server execution time with lower priority periodic tasks, three timelines are 
shown in Figure 3-2 for the aperiodic time available (ATA) of priority levels 1 (the highest), 2, 
and 3 (the lowest). At time = 0, Xi begins execution and the server time of priority level 1 is 
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Figure 3-2:   Priority Exchange Example 

brought to its full capacity of 1.33 units. Since no aperiodic tasks are pending, the PE 
server's priority 1 execution time is exchanged with the periodic execution time of priority 
level 2. This exchange continues until the first aperiodic request occurs at time = 1, at which 
point the remaining priority 1 server time is used to service the aperiodic task. At time = 
1.33, the priority 1 server time is exhausted and aperiodic service is continued using priority 
2 server time. At time = 2.33, service for the first aperiodic request is complete, the PE 
server time is completely exhausted, and x1 resumes execution. At time = 3.33, x1 com- 
pletes execution and x2 begins execution. At time = 5, the server time of priority level 1 is 
brought to its full capacity of 1.33 units. Since no aperiodic tasks are pending, the priority 1 
server time is traded down to priority 3 server time by time = 6.33. At time = 8, the second 
aperiodic request occurs and is serviced using the priority 3 server time. At time = 9.33, 
service for the second aperiodic request is complete, the priority 3 server time is completely 
exhausted, and x2 resumes execution.   At time = 10, the server time of priority level 1 is 
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brought to its full capacity of 1.33 units and x2 begins execution. Since no aperiodic re- 
quests occur between time = 10 and time = 20, the PE server time is exchanged for lower 
priority aperiodic execution time or is discarded when no exchanges are possible (as from 
time = 12.66 to time = 14 when no periodic or aperiodic tasks are ready to execute). 

The following server characteristics should be noted by comparing the operation of the DS 
and PE algorithms in Figures 3-1 and 3-2. 

• The DS algorithm always preserves its server execution time at its original pri- 
ority level whereas the PE algorithm must exchange or discard its server execu- 
tion time if no aperiodic tasks are pending. This quality of the DS algorithm 
allows a less complex implementation than is necessary for the PE algorithm. 

• Since the PE algorithm has a larger server size, it was able to provide a better 
response time for the aperiodic requests. 

• Both algorithms periodically replenish their server execution time at the begin- 
ning of the server period. 

Figure 3-3 shows the behavior of the SS algorithm using a high priority sporadic server for 
this task set. Because the sporadic server is the only task executing at priority level P1 (the 
highest priority level), P^ becomes active only when the sporadic server executes an 
aperiodic task. Similarly, whenever the sporadic server is not executing an aperiodic task, 
P1 is idle. Therefore, R^ is set whenever an aperiodic task is executed by the sporadic 
server. Replenishment of consumed sporadic server execution time will occur one server 
period after the sporadic server initially services an aperiodic task. 

The task execution in Figure 3-3 proceeds as follows. For this example the sporadic server 
begins with its full execution time capacity. At time = 0, x1 begins execution. At time = 1, 
the first aperiodic request occurs and is serviced by the sporadic server. Priority level P1 

has become active and RT-| is set equal to 6. At time = 2.33, the servicing of the first 
aperiodic request is completed, exhausting the server's execution time, and P1 becomes 
idle. A replenishment of 1.33 units of time is set for time = 6 (note the arrow in Figure 3-3 
pointing from time = 1 on the task execution timeline to time = 6 on the server capacity 
timeline). The response time of the first aperiodic request is 1 unit of time. At time = 3.33, 
x1 completes execution and T2 begins execution. At time 6, the first replenishment of server 
execution time occurs, bringing the server's capacity up to 1.33 units of time. At time = 8, 
the second aperiodic request occurs and P-, becomes active as the aperiodic request is ser- 
viced using the sporadic server's execution time. RT-| is set equal to 13. At time = 9.33, the 
servicing of the second aperiodic request completes, P1 becomes idle, and x2 is resumed. 
A replenishment of 1.33 units of time is set for time = 13 (note the arrow in Figure 3-3 point- 
ing from time = 8 on the task execution timeline to time = 13 on the server capacity timeline). 
At time 13, the second replenishment of server execution time occurs, bringing the server's 
capacity back up to 1.33 units of time. 

By comparing Figures 3-1, 3-2, and 3-3, the following advantages of the SS algorithm are 
seen: 
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Figure 3-3:   High Priority Sporadic Server Example 

• The SS algorithm has a low implementation complexity that is comparable to 
the DS algorithm, because it maintains its server execution time at its original 
priority level and does not exchange server execution time with lower priority 
levels as the PE algorithm does. 

• The SS algorithm has the same server size advantage over the DS algorithm 
as the PE algorithm does. 

• The SS algorithm may also have a runtime advantage over the DS and PE al- 
gorithms. A runtime overhead is incurred periodically for the DS and PE algo- 
rithms to replenish their server execution time. This overhead is paid whether 
or not any aperiodic tasks were serviced during the last server period. The SS 
algorithm only pays a replenishment overhead if some of its server execution 
time has been consumed. 

To better understand the SS algorithm's replenishment method, the previous high priority 
sporadic server example presented in Figure 3-3 is augmented with examples of an equal 
and a medium priority sporadic server. For these examples, presented in Figures 3-4 and 
3-5, all aperiodic requests require 1 unit of execution time. 

Figure 3-4 shows the task execution and the task set characteristics for the equal priority 
sporadic server example. The sporadic server and x1 both execute at priority level P^ and 
%2 executes at priority level P2. At time = 0, x1 begins execution, P1 becomes active, and 
RT.| is set to 10. At time = 2, the first aperiodic request occurs and is serviced by the 
sporadic server. At time = 3, service is completed for the first aperiodic request, x2 begins 
execution, P1 becomes idle, and a replenishment of 1 unit of server execution time is set for 
time = 10. At time = 8, the second aperiodic request occurs and is serviced using the 
sporadic server, P1 becomes active, and RT1 is set to 18. At time = 9, service is completed 
for the first aperiodic request, x2 resumes execution, P1 becomes idle, and a replenishment 
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Figure 3-4:   Equal Priority Sporadic Server Example 

of 1 unit of server execution time is set for time = 18. At time = 10, x1 begins execution and 
causes P1 to become active and the value of RT, to be set. However, when T1 completes at 
time = 12 and P1 becomes idle, no sporadic server execution time has been consumed. 
Therefore, no replenishment time is scheduled even though the priority level of the sporadic 
server became active. 

Figure 3-4 illustrates two important properties of the sporadic server algorithm. First, RT; 

can be determined from a time that is less than the request time of an aperiodic task. This 
occurs for the first aperiodic request in Figure 3-4 and is allowed because P., became active 
before and remained active until the aperiodic request occurred. Second, the amount of 
execution time replenished to the sporadic server is equal to the amount consumed. When 
the PE and DS algorithms replenish their server execution time, the server capacity is al- 
ways brought to its maximum value regardless of how much server execution was used. 

Figure 3-5 shows the task execution and the task set characteristics for the medium 
sporadic server example. The sporadic server executes at priority level P2, between the 
priority levels of x1 (P^ and t2 (P3). At time = 0, x1 begins execution. At time • 1, x1 

completes execution and x2 begins execution. At time = 4.5, the first aperiodic request oc- 
curs and is serviced using the sporadic server making priority level P2 active. At time = 5, x^ 
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Figure 3-5:   Medium Priority Sporadic Server Example 

becomes active and preempts the sporadic server. At this point both priority levels P: and 
P2 are active. At time = 6, x1 completes execution, P1 becomes idle, and the sporadic ser- 
ver is resumed. At time = 6.5, service for the first aperiodic request is completed, T1 

resumes execution, and P2 becomes idle. A replenishment of 1 unit of sporadic server ex- 
ecution time is scheduled for time = 14.5. At time = 8, the second aperiodic request occurs 
and consumes 1 unit of sporadic server execution time. A replenishment of 1 unit of 
sporadic server execution time is set for time = 18. 

Figure 3-5 illustrates another important property of the sporadic server algorithm. Even if 
the sporadic server is preempted and provides discontinuous service for an aperiodic re- 
quest (as occurs with the first aperiodic request in Figure 3-5), only one replenishment time 
is necessary. Preemption of the sporadic server does not cause the priority level of the 
sporadic server to become idle, allowing a discontinuous consumption of sporadic server 
execution time to be replenished continuously. Note that one replenishment for the con- 
sumption of sporadic server execution time resulting from both aperiodic requests in Figure 
3-5 is not permitted because the priority level of the sporadic server became idle between 
the completion of the first aperiodic request and the initial service of the second aperiodic 
request. 
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3.3. The Schedulability of Sporadic Servers 
In this section we prove that, from a scheduling point of view, a sporadic server can be 
treated as a standard periodic task with the same period and execution time as the sporadic 
server. It is necessary to prove this claim because the sporadic server violates one of the 
basic assumptions governing periodic task execution as described by Liu and Layland [5] in 
their analysis of the rate monotonic algorithm. Given a set of periodic tasks that is schedul- 
able by the rate monotonic algorithm, this assumption requires that, once a periodic task is 
the highest priority task that is ready to execute, it must execute.2 If a periodic task defers its 
execution when it otherwise could execute immediately, then it may be possible that a lower 
priority task will miss its deadline even if the set of tasks was schedulable. A sporadic ser- 
ver does not meet this Liu and Layland requirement because even though it may be the 
highest priority task that is ready to execute, it will preserve its execution time if it has no 
pending requests for aperiodic service. This preservation of the server's execution time is 
equivalent to deferring the execution of a periodic task. A deferrable server also fails to 
meet the above requirement because of its preservation capabilities. To prove that a 
sporadic server can still be treated as a normal periodic task, we will show that the sporadic 
server's replenishment method compensates for any deferred execution of the sporadic ser- 
ver. In contrast, we will also show how the replenishment method for a deferrable server 
fails in this respect. 

To demonstrate how deferred execution can cause a lower priority task to miss its deadline, 
the execution of a periodic task will be compared to the execution of a deferrable server with 
the same period and execution time. Figure 3-6 presents the execution behavior of three 
periodic tasks. Let T represent the period of a periodic task and C represent its execution 
time. Task A, with TA = 4 and CA = 1, has the highest priority. Task B, with TB - 5 and CB = 
2, has a medium priority. Task C, with Tc = 10 and Cc = 3, has the lowest priority. Task A 
and B begin their first periods at time = 0 and Task C begins its first period at time = 3. Note 
that no idle time exists during the first period of Task C. This constrains Task C to a max- 
imum execution time of 3 units. 

Figure 3-7 presents the execution of the task set of Figure 3-6 with Task B replaced with a 
deferrable server. Also presented in Figure 3-7 is the capacity of the deferrable server as a 
function of time. For this example, the following aperiodic requests are made to the defer- 
rable server: 

Request Request Instant 

1 

Exec Time 

1 1 
2 3 1 
3 5 2 
4 10 2 

2For the case when two or more periodic tasks of equal priority are the highest priority tasks that are ready to 
execute, the requirement is that one of these tasks must execute. 
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Figure 3-6:   Periodic Task Example 

Referring to the deferrable server execution graph in Figure 3-7, at time = 2 the service for 
the first aperiodic request completes and no other aperiodic requests are pending. At this 
point the deferrable server defers its execution by preserving its remaining execution time 
until the second aperiodic request occurs at time = 3. Note that this deferred execution 
followed by the servicing of the second aperiodic request from time = 3 to time = 4 has 
blocked Task C from executing during this interval; whereas during the same interval in 
Figure 3-6, Task C was not blocked. The third and fourth aperiodic requests are executed 
by the deferrable server during the same intervals as Task B executes in Figure 3-6. Thus, 
Task A and the deferrable server limit Task C to a maximum of 2 units of execution time per 
period, whereas the original periodic task was able to complete 3 units of computation dur- 
ing the same period in Figure 3-6. If Task C had needed 3 units of execution time during the 
period shown in Figure 3-7, it would have missed its deadline. It is this invasive quality of 
the deferrable server for lower priority periodic tasks that results in the lower scheduling 
bound for the DS algorithm described in Section 2.2. 
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Figure 3-7:   An Example of Deferred Execution with the DS Algorithm 

Figure 3-8 presents the execution of the task set of Figure 3-6 with Task B replaced by a 
sporadic server. The third timeline in Figure 3-8 is the capacity of the sporadic server as a 
function of time. The arrows in Figure 3-8 indicate the replenishment of consumed sporadic 
server execution time. The requests for aperiodic service are the same as the requests of 
Figure 3-7. Note that the sporadic server, like the deferrable server in Figure 3-7, blocks the 
execution of Task C during time = 3 to time = 4. However, the sporadic server replenish- 
ment method prevents the execution time consumed during this interval from being 
replenished until time = 8. This allows Task C to execute from time = 6 to time = 7, whereas 
the deferrable server was executing during this interval in Figure 3-7. The sporadic server, 
unlike the deferrable server, blocks Task C from executing from time = 9 to time = 10. How- 
ever, the replenishment of the server execution time consumed during this interval does not 
occur until time = 14. This allows Task C to complete its execution from time = 11 to 
time = 12. 

Thus, in this example, the sporadic server allows Task C to meet its deadline whereas a 
deferrable server having the same period and execution time cannot. However, one should 
note that the sporadic server completes the third and fourth aperiodic requests 3 time units 
later than the deferrable server. Thus, for the same series of aperiodic requests, a sporadic 
server may provide a longer response time than an equivalents sized deferrable server. 
Section 3.5 presents a simulation study that investigates the relative performance of these 
algorithms. 
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Figure 3-8:   An Example of Deferred Execution with the SS Algorithm 

Now that we have shown a specific example of how the replenishment method of the SS 
algorithm can compensate for deferred execution of the sporadic server, we need to prove 
that, in terms of schedulability, a sporadic server can always be treated as a periodic task 
having the same period and execution time. To do this we first show that a sporadic server 
can behave in a manner identical to a periodic task with the same period and execution 
time. Next we show that any execution of the sporadic server before the server's priority 
level becomes idle, falls into one of three cases: 

1. None of the server's execution time is consumed. 
2. The server's execution time is completely consumed. 
3. The server's execution time is only partially consumed. 

In the first case, the server can be shown to be equivalent to a periodic task with a delayed 
request. In the second case, the server's execution is shown to be identical to that of a 
normal periodic task. In the third case, the execution behavior of the server is shown to be 
equivalent to two periodic tasks: one that executes normally and one that is delayed. Thus, 
all types of sporadic server execution are shown to be equivalent to the execution of one or 
more periodic tasks. 

To explore the schedulability effects of sporadic servers upon a periodic task set, several 
terms and concepts developed by Liu and Layland in [5] are needed. A periodic task set is 
composed of n independent tasks, t1 through xn, numbered in order of decreasing priority. 
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A periodic task, Xj, is characterized by its computation time, C; and a period, Tj. At all times 
the highest priority task that is ready to execute is selected for execution, preempting any 
lower priority tasks as necessary. The deadline of a periodic task occurs one period after it 
is requested. The critical instant for a periodic task is the instant at which a request for that 
task will have the longest response time. Liu and Layland [5] prove the following theorem 
concerning the critical instant of a periodic task: 

Theorem 1: Given a set of periodic tasks, the critical instant for any task occurs 
whenever the task is requested simultaneously with all higher priority tasks. 

The critical zone for a periodic task is the time interval between its critical instant and the 
completion of that request. A periodic task set is schedulable if the critical zone for each 
task is less than or equal to its deadline. 

We now prove the following property of schedulable periodic tasks sets: 

Lemma 2: Given a periodic task set that is schedulable with xr the task set is also 
schedulable if Xj is split into k separate periodic tasks, x-^ xik, with 

IjLi Cid = C, and Tj j -Tj for l <j<k. 

Proof: By the rate monotonic algorithm, all tasks TM, . .. , xik will be assigned 
the same priority because they have the same period. The rate monotonic algo- 
rithm schedules a periodic task set independently of the phasing between any two 
tasks.   Suppose the requests for tasks xn,   .... xik are all in sync with each 
other. The execution pattern of x, * xjk will now be identical to the execution 
pattern of the original task, x,, and therefore'the task set is still schedulable for this 
phasing of x( 1 xik. Since the task set is schedulable for one phasing of x( v 

.... Xj k it is'schedulable for them all. The Lemma follows. 

Next we establish that the execution behavior of a sporadic server can be identical to that of 
a periodic task with the same period and execution time. 

Lemma 3: Given a schedulable periodic task set, replace a periodic task with a 
sporadic server having the same period and execution time. If the requests for 
the sporadic server are identical to that of the original periodic task, then the ex- 
ecution behavior of the sporadic server is identical to that of the original periodic 
task. 

Proof: The periodic task and the sporadic server execute at the same priority 
level, and each request for the sporadic server and the periodic task require the 
same execution time. Each request for the sporadic server completely consumes 
its execution time, and the consumed execution time is replenished before the 
next request. Therefore, the sporadic server's execution is identical to that of the 
original periodic task. 

We now show that sporadic servers are equivalent to periodic tasks in terms of 
schedulability. 

Theorem 4: A periodic task set that is schedulable with a task, tj, is also 
schedulable if x, is replaced by a sporadic server with the same period and execu- 
tion time. 
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Proof: To prove this theorem we will show that, for all types of sporadic server 
execution, the sporadic server exhibits an execution behavior that can also be 
represented by a combination of one or more periodic tasks. 

Let the sporadic server's period be Tss and execution time be Css. At time tA, let 
the priority level of the server become active and let the sporadic server be at full 
capacity. Consider the interval of time beginning at tA during which the priority 
level of the server remains active. The execution behavior of the server during 
this interval can be described by one of three cases: 

1. None of the server's execution time is consumed. 
2. All of the server's execution time is consumed. 
3. The server's execution time is partially consumed. 

Case 1: If the server is not requested during this interval, it preserves its ex- 
ecution time. The server's behavior is identical to a periodic task for 
which the interarrival time between two successive requests for the 
periodic task is greater than its period. Referring to Theorem 1, if 
any request for a periodic task is delayed, it cannot lengthen critical 
zone of any lower priority periodic task because the lower priority 
tasks would be able to execute during the delay, yielding a shorter 
critical zone. Since a critical zone of a lower priority task cannot be 
made longer, the delay has no detrimental schedulability effect. 

Case 2: If the execution time of the sporadic server is completely consumed, 
a replenishment will be scheduled to occur at tA + Tss to bring the 
server back to full capacity. By Lemma 3 the behavior of the 
sporadic server between tA and tA + Tss is identical to that of a 
similar periodic task that is requested at tA. 

Case 3: If the server's  execution  time is not completely exhausted,  a 
replenishment will be scheduled to occur at tA + Tss for the con- 
sumed execution time and the server will preserve the unconsumed 
execution time until it is requested. Let the amount of execution time 
to be replenished be CR. 
Now consider a periodic task with a period of Tss and an execution 
time of Css that is split into two periodic tasks, xx and xy, both with a 
period of Tss. Let tx have an execution time of CR and let xy have 
an execution time of Css - CR. By Lemma 2, the splitting of the 
original periodic task can be done without affecting schedulability. 
Let requests for both TX and -cy be in sync until tA. At tA, let xx ex- 
ecute normally, but delay xy. As in Case 1, the delay for xy has no 
schedulability effect. The behavior of the two periodic tasks tx and 
Ty from tA to tA + Tss is identical to that of the sporadic server over 
the same time interval. 

Because a sporadic server's execution in each of these cases can be represented 
by a periodic task or a combination of periodic tasks with a period and total execu- 
tion time that is identical to that of the sporadic server, the Theorem follows. 
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If a sporadic server's execution time is only partially consumed before a replenishment is 
scheduled, as described in Case 3 of the proof for Theorem 4, the server must then manage 
two quantities of execution time: the execution time that will be replenished and the uncon- 
sumed execution time. This could be a concern for sporadic server implementations if many 
successive executions of the sporadic server split the server's execution time into many 
small quantities. However, if the server is not requested for a while, these small quantities 
can be merged together. In fact, regardless of how many times a server's execution time 
has been split into smaller quantities, if the server is not requested for an amount of time 
equal to or greater than its period, then all of these quantities can be merged together. An 
example of this behavior is shown in Figure 3-9. The sporadic server is the highest priority 
task in the system; it has a period of 5 and an execution time of 2. The first four requests for 
the server require 0.5 units of execution time. Because the priority level of the sporadic 
server becomes idle between each of these requests, the execution time of the sporadic 
server has been split four ways, requiring four separate replenishment times. However, no 
requests are made to the server from time = 4 to time = 9, one server period after the last 
request. By time = 9, the server's capacity has been completely replenished and merged 
together. 

Sporadic Server: 
T « 5. C = 2 

Sporadic Server 
Capacity 

0 2 4 6 8 10       12       14       16        18       2D 

Figure 3-9:   An Example of The Splitting and Merging 
of Sporadic Server Execution Time 

In this Chapter we have shown that, although a sporadic server can defer its execution time, 
it can still be treated as a periodic task. However, it was also shown that this is not true for a 
deferrable server. The key difference between these two types of servers is that when a 
sporadic server defers its execution, it also defers the replenishment of its execution time 
once it is consumed. In contrast, a deferrable server replenishes its execution time inde- 
pendently of when its execution time is consumed. 
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3.4. Sporadic Servers and Priority Inheritance Protocols 
In this Chapter we define the interaction of sporadic servers and the priority inheritance 
protocols developed by Sha, Rajkumar, and Lehoczky in [8]. 

Mok [6] has shown that the problem of determining the schedulability of a set of periodic 
tasks that use semaphores to enforce exclusive access to shared resources is NP-hard. 
The semaphores are used to guard critical sections of code (e.g., code to insert an element 
into a shared linked list). To address this problem for rate monotonic scheduling, Sha, Raj- 
kumar, and Lehoczky [8] have developed priority inheritance protocols and derived sufficient 
conditions under which a set of periodic tasks that share resources using these protocols 
can be scheduled. The priority inheritance protocols require that the priority of a periodic 
task be temporarily increased if it is holding a shared resource that is needed by a higher 
priority task. This technique of temporarily increasing a task's priority is also the basis for 
the implementation of sporadic servers. Since both sporadic servers and the priority in- 
heritance protocols manipulate the priorities of tasks, it is necessary to define the interaction 
of these two scheduling techniques. 

The priority inheritance protocols manipulate the priorities of tasks that enforce mutual ex- 
clusion using semaphores in the following manner.3 Consider the case of a task, xA, that is 
currently executing and wants to lock a semaphore and enter a critical section. The priority 
inheritance protocols will select one of the following two sequences of task execution: 

1. Task xA is allowed to lock the semaphore and enter the critical section. During 
the critical section TA executes at its assigned priority. 

2. Task xA is not allowed to lock the semaphore and is blocked from executing. 
The lower priority task that is causing the blocking then inherits the priority of 
xA and continues execution. 

We are concerned with the problem of the interaction of priority inheritance protocols and a 
sporadic server for the case when an aperiodic task wants to lock a semaphore and enter a 
critical section. The following rules govern the interaction of the priority inheritance 
protocols and the use of sporadic servers: 

1. The execution of an aperiodic task that is using its sporadic server consumes 
the sporadic server's execution time. Similarly, the execution of any task that 
inherits the priority of a sporadic server from an aperiodic task also consumes 
the sporadic server's execution time. 

2. When a sporadic server's execution time is exhausted, all tasks that have in- 
herited the priority of the sporadic server should then return to the priority they 
had before inheriting the sporadic server's priority. 

3The description here of the operation of the priority inheritance protocols is very simplistic but sufficient for 
describing the interaction of sporadic servers and the priority inheritance protocols. For a better description of 
the priority inheritance protocols, the reader is referred to [8]. 
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Consider the simple example of an aperiodic task, tA, that is using its sporadic server but 
whose execution is being blocked by a low priority task, xL, that has locked a semaphore. 
By the priority inheritance protocols and rule 1, xL will inherit the priority of the sporadic ser- 
ver. The execution of TL until it releases the semaphore will consume the sporadic server's 
execution time. If the sporadic server's execution time were exhausted before xL released 
the semaphore, the priority of TA would return to its assigned priority and, by rule 2, xB would 
return to the priority it had before inheriting the priority of the sporadic server. 

The determination of schedulability for soft deadline aperiodic tasks that use a sporadic ser- 
ver is dependent upon whether or not the aperiodic task uses semaphores to share data 
with other tasks. If the aperiodic task does not share data with other tasks, then 
schedulability analysis for the sporadic server is sufficient. However, if the aperiodic task 
does share data, a different analysis is required. Consider the case where an aperiodic task 
is using its sporadic server's execution capacity and locks a semaphore. During the execu- 
tion of the critical section, the sporadic server's capacity may be exhausted, forcing the 
aperiodic task to return to background priority. If this happens, the aperiodic task can poten- 
tially block any higher priority task that wants to lock the semaphore. Thus, the critical sec- 
tions of this aperiodic task can become the blocking time for any higher priority tasks that 
may want to lock the semaphore. This blocking time can be accounted for by using the 
schedulability analysis equations developed in [8]. We will also discuss the use of these 
equations for scheduling short deadline aperiodic tasks in Chapter 4. 

3.5. Sporadic Server Performance 

Simulations were conducted to compare the response time performance of the Polling, DS, 
PE, and SS algorithms for soft deadline aperiodic tasks. For these simulations, a set of ten 
periodic tasks with periods ranging from 54 to 1200 was chosen. Three periodic loads were 
simulated for this set of periods: 40%, 69%, and 88%. The 40% load represents a low peri- 
odic load. The 69% case corresponds to the maximum resource utilization for which the 
rate monotonic algorithm can always guarantee schedulability, independent of the particular 
task periods [5]. The 88% case represents the average case scheduling bound for the rate 
monotonic algorithm [2]. The aperiodic load for these simulations was varied across the 
range of resource utilization unused by the periodic tasks. The interarrival times for the 
aperiodic tasks were modeled using a Poisson arrival pattern. There are three different 
average interarrival times: 18, 36, and 54. The aperiodic service times were modeled using 
an exponential distribution. 

The server periods for each of the Polling, DS, PE, and SS algorithms were chosen so that 
the aperiodic server would have the highest priority in the system. The server periods for 
the Polling, PE, and SS algorithms were set equal to the shortest periodic task. Since prior- 
ity ties are broken in favor of aperiodic tasks, this period assignment gives these aperiodic 
servers the highest priority. The server execution times for these algorithms were selected 
to be the maximum value for which all the periodic tasks remain schedulable. The periods 
and execution times for the DS algorithm were chosen in a different manner.  In [11], guide- 
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lines were given for selecting the period for the deferrable server in order to avoid a worst 
case utilization bound for periodic tasks. The guideline suggests that TDS < Tmin / (1 + UDS) 
where TDS is the deferrable server period, Tmin is the smallest period of the periodic tasks, 
and UDS is the utilization of the deferrable server. For each periodic load, the maximum 
deferrable server utilization for which all the periodic tasks remain schedulable for TDS = 27 
was found. This utilization value was then used in the above formula to obtain a new value 
for TDS. The resulting deferrable server periods were 36 for a periodic load of 40%, 44 for a 
periodic load of 69%, and 52 for a periodic load of 88%. For each periodic load, the max- 
imum deferrable server utilization for which all the periodic tasks remain schedulable was 
found using these new values for TDS. 

Figures 3-10, 3-11, and 3-12 present the results of these simulations for each of the mean 
aperiodic interarrival times simulated (18, 36, and 54). In each of these figures, three 
graphs are presented, which correspond to the different periodic loads simulated (40%, 
69%, and 88%). In all of the graphs of these figures, the average aperiodic response time of 
each algorithm is plotted as a function of the aperiodic load. The average aperiodic re- 
sponse time of each algorithm is presented relative to the response time of background 
aperiodic service. In other words, the average response time equivalent to background ser- 
vice has a value of 1.0 on all the graphs. An improvement in average aperiodic response 
time over background service corresponds to a value of less than 1.0. The lower the re- 
sponse time curve lies on these graphs, the better the algorithm is for improving aperiodic 
responsiveness. 

As can be seen from each of the graphs presented in Figures 3-10, 3-11, and 3-12, the DS, 
PE, and SS algorithms can provide a substantial reduction in average aperiodic response 
time compared to background or polling aperiodic service. These algorithms provide the 
greatest improvement for short, frequent aperiodic tasks as can be seen in the lower left- 
hand side of each graph. The performance of the SS algorithm in each of these graphs is 
comparable to the performance of the DS and PE algorithms. 
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Figure 3-10:   SS Algorithm Performance Comparison, 
Mean Aperiodic Interarrival Time = 18 
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Figure 3-11:   SS Algorithm Performance Comparison, 
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Figure 3-12:   SS Algorithm Performance Comparison, 
Mean Aperiodic Interarrival Time = 54 
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Referring to the 40% periodic load case presented in graph (a) of Figures 3-10, 3-11, and 
3-12 the performance of the SS and PE algorithms becomes better than the performance of 
the DS algorithm as the aperiodic load increases. The performance of the DS algorithm 
even becomes worse than the performance of Polling for high aperiodic load. This increase 
in the relative response time for the DS algorithm is due to its smaller server size of 45.3% 
compared to a server size of 56.3% for the Polling, PE, and SS algorithms. The larger 
server size of the SS algorithm is an advantage over the DS algorithm for a task set with a 
moderate periodic load and a high aperiodic load. 

The 69% and 88% periodic load cases presented in graphs (b) and (c) of Figures 3-10, 
3-11, and 3-12 show that the average response time of the SS algorithm becomes slightly 
higher than the response time of the DS and PE algorithms for moderate to high aperiodic 
load. The behavior is not attributable to a difference in server size, because as the periodic 
load increases, the difference in server sizes diminishes. The difference between the DS 
server size and server size for the Polling, PE, and SS algorithms is about 1% for a periodic 
load of 69% and decreases to about 0.1% for a periodic load of 88%. The cause for the 
slightly higher response time of the SS algorithm is due to its more restrictive replenishment 
method as discussed in Section 3.3. The DS and PE algorithms periodically replenish their 
server execution time independent of when the server's execution time was consumed. The 
SS algorithm replenishes consumed server execution time in a sporadic manner that de- 
pends upon when the execution time is consumed. On the average, once server execution 
time is exhausted, aperiodic tasks must wait longer for the SS algorithm to replenish its ser- 
ver execution time than for the DS or PE algorithms. 
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4. Scheduling Sporadic Tasks 
One important type of aperiodic task that is not generally supported by previous aperiodic 
service algorithms is a sporadic task, which is an aperiodic task with a hard deadline and a 
minimum interarrival time. To guarantee a hard deadline for a sporadic task, a high priority 
server can be created to exclusively service the sporadic task. This server preserves its 
execution time at its original priority level until it is needed by the sporadic task. To 
guarantee that the server will always have sufficient execution time to meet the sporadic 
task's deadline, an minimum interarrival time restriction must be placed upon the sporadic 
task. This minimum interarrival time must be equal to or greater than the period of the ser- 
ver task. As long as the sporadic task does not request service more frequently than the 
minimum interarrival time, its hard deadline can be guaranteed. The SS algorithm can be 
used to provide a guarantee for a sporadic task as long as the aperiodic task's deadline is 
equal to or greater than its minimum interarrival time. However, for the cases when the 
deadline is shorter than the minimum interarrival time, a different priority assignment for the 
sporadic server and a different schedulability analysis are necessary. The priority of the 
sporadic server should be based upon the deadline of its associated sporadic task, not upon 
the maximum arrival rate of the sporadic task. This type of priority assignment, first consid- 
ered by Leung and Whitehead in [4], is referred to as deadline monotonic and requires a 
schedulability analysis different from that necessary for a rate monotonic priority assign- 
ment. Apart from the assignment of server priority, the operation of a deadline monotonic 
sporadic server is identical to that of the SS algorithm as presented in Section 3.1. This 
section demonstrates the necessity of a deadline monotonic priority assignment for a short 
deadline sporadic task and describes the schedulability analysis for a task set where the 
priorities of the periodic tasks are assigned by the rate monotonic algorithm and the prior- 
ities of the sporadic servers are assigned with the deadline monotonic algorithm. 

4.1. A Simple Example of the Deadline Monotonic Priority 
Assignment 

The necessity for a deadline monotonic priority assignment for a short deadline sporadic 
task will be illustrated with a simple example that shows how a rate monotonic priority as- 
signment cannot guarantee the sporadic task's hard deadline while a deadline monotonic 
priority assignment can be used to guarantee that the hard deadline will always be met. The 
set of tasks presented in Figure 4-1 will be used for this example. 
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Figure 4-1:   Periodic Task Set with Short Deadline Aperiodic Task 
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Figure 4-2 presents the execution of these tasks using the rate monotonic priority assign- 
ment for the sporadic task. In Figure 4-2 a high priority is represented by a low number. 
Note that the rate monotonic algorithm assigns the lowest priority to the sporadic task be- 
cause of its long minimum interarrival time. The task execution graph presented in Figure 
4-2 assumes that requests for both periodic tasks and the sporadic task occur at time = 0. 
Both periodic tasks meet their deadlines, but the sporadic task completes only 2 of the re- 
quired 8 units of execution time before it misses its deadline. Clearly, the rate monotonic 
algorithm is inappropriate for this task set. 

Rate  Monotonic  Priority Assignment: 

Rate Exec Time Deadline Priority 

0 12 4 12 1 

20 4 20 2 

• 32 8 10 3 

Ap 
R 

•enc 

»qu 
die 
»st 

Missed 
Deadline 

Task 
Execution 

I 1 
' i' p pi * I * I' i' i' i' i 

0 2        4 6 8        10      12      14       16       18      20 

Figure 4-2:   Example of Rate Monotonic Priority Assignment 
for a Short Deadline Sporadic Task 

Because a higher priority is needed for the short deadline sporadic task, one might consider 
treating it as a periodic task with a period of 10. This would give the sporadic task the 
highest priority and guarantee that its deadline would be met. However, this would cause 
other problems. The sporadic task only needs a resource utilization of 25% to meets its 
deadline. Treating it as a periodic task with a period of 10 means that a resource utilization 
of 80% (an execution time of 8 units divided by a period of 10 units) would be dedicated to a 
task that needs only 25%. This is a very wasteful scheduling policy. Also, if the priority of 
the sporadic task is increased in this manner, the total utilization required to schedule all 
three tasks is now 133.3% (33% + 20% + 80%) making this an infeasible schedule. A differ- 
ent method is needed that will assign priorities such that all their deadlines will be met using 
an efficient level of scheduled resource utilization. 
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A deadline monotonic priority assignment can be used to efficiently schedule the task set 
presented in Figure 4-1. A sporadic server is created with an execution time of 8 units and a 
period of 32 units to service the short deadline sporadic task. The priority of the sporadic 
task is assigned based upon the deadline of the task it is servicing, not upon its period. In 
other words, the rate monotonic algorithm is used to assign priorities for the periodic tasks, 
and the priority of the sporadic task is assigned as if its rate of occurrence were equal to its 
deadline. The task execution graph for this priority assignment is presented in Figure 4-3. 
The sporadic task now has the highest priority and meets its deadline. The execution of the 
periodic tasks is delayed, but both still meet their deadlines. 

Deadline  Monotonic  Priority Assignment: 

Rate Exec Time        Deadline 

32 8 10 

12 4 12 

20 4 20 rr: 

Priority 

1 

2 

3 

Aperiodic 
Request 

Task 
Execution 

Deadline 
Met 

10 12      14      16       18      20 

Figure 4-3:   Example of Deadline Monotonic Priority Assignment 
for a Short Deadline Sporadic Task 

Now that we have shown that a deadline monotonic priority assignment can be used to 
guarantee that a sporadic task will meet its deadline, we need to be able to perform a 
schedulability analysis that will indicate whether or not a deadline monotonic priority assign- 
ment for the sporadic server and a rate monotonic priority assignment for the periodic tasks 
is feasible for a given task set. The deadline monotonic priority assignment raises the prior- 
ity of the sporadic server above the priority that would be assigned by the rate monotonic 
algorithm. As such, the sporadic server can be considered as a low priority task that is 
allowed to block a higher priority task from executing. A similar problem can occur when 
periodic tasks that share data using critical sections are scheduled using the rate monotonic 
algorithm (as was seen earlier in Section SS-PCP). A low priority task that has already 
entered a critical section can block the execution of a high priority task that needs to enter 
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the critical section. The blocking of the high priority task continues as long as the critical 
section is locked by the lower priority task. Sha, Rajkumar, and Lehoczky [8] have devel- 
oped the priority ceiling protocol for a set of periodic tasks that share data using critical sec- 
tions. This protocol establishes a set of sufficient conditions under which the periodic tasks 
can be scheduled using the rate monotonic algorithm. The schedulability analysis equations 
developed for the priority ceiling protocols can be used to test the schedulability of sporadic 
servers with deadline monotonic priority assignments. These equations are presented be- 
low: 

0) 

V i, l<i<n,    — + — + ••• + — + -!.< i(21/'-l). 
Tx    T2 r,    Tt 

(-1      T    /7Y-.     C      B 
V i, l<i<n, min    [ Y U- -L ["-=1 + -i + -i] < 1 (2) 

PI JVk   
Tj     lTk   Vk 

where Cj and Tj are respectively the execution time and period of task Xj, L/, = C/T^ is the 
utilization of task tj, and Rt = { (k, I) \ \<k<i, 1= 1, • • •, LT/TkJ}. The term Bt is the worst-case 
blocking time for task Xj. 

Equations 1 and 2 were derived from equations developed for testing the schedulability of a 
set of periodic tasks whose priorities have been assigned using the rate monotonic algo- 
rithm. Equation 1 was derived using the worst case utilization bound equation for schedul- 
ing periodic tasks developed by Liu and Layland in [5], which, under the absolute worst case 
conditions, provides a sufficient condition for determining schedulability of a rate monotonic 
priority assignment. Equation 2 was derived from an equation developed by Lehoczky, Sha, 
and Ding [2] that provides necessary and sufficient conditions for determining schedulability 
of a rate monotonic priority assignment. Both Equations 1 and 2 provide sufficient con- 
ditions for scheduling a task set where high priority tasks can be blocked by lower priority 
tasks. However, Equation 1 represents the absolute worst case conditions, and a much 
tighter characterization is provided by Equation 2. 

The blocking term, Sj, in Equations 1 and 2 represents the amount of time that a lower prior- 
ity task can block a higher priority task from executing. For a sporadic server with a dead- 
line monotonic priority, Sj is used to represent the amount of time the sporadic server can 
block a periodic task that has a higher priority than the rate monotonic priority of the 
sporadic server. To check the schedulability of a periodic task set with a deadline 
monotonic sporadic server, the term 6, is set equal to the execution time of the sporadic 
server for all Tj with a priority less than or equal to the priority of the sporadic server and 
greater than the sporadic server's original rate monotonic priority. For all x, with a priority 
less than the sporadic server's original rate monotonic priority, the sporadic server should be 
treated normally (i.e., treated as a normal sporadic server with a rate monotonic priority 
assignment). For all x, with a priority greater than the priority of the sporadic server, the 
corresponding value of S; is set to zero. 
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The use of Equations 1 and 2 will be demonstrated with the task set presented in Figure 4-1. 
Let x1 and T2 be the periodic tasks and let t3 be the short deadline sporadic task. Below are 
the parameters for each task: 

Task C, T, Bj 

x1 4 12 8 
T2 4 20 8 
T3 8 32 0 

Evaluation of Equation 1 proceeds as follows: 

/=1,   _L + _!.<i 
r,   r, 

±+A*i 
12    12 

12 

t/i ^•'O ^O 

,' = 2,    _i + _i + _£<2(21/2-l). 
rx   72   r2 

± + ± + l<0.824 
12    20    20 

— > 0.824 
60 

The inequality for i = 1 holds, but the inequality for i = 2 does not; therefore, it is not neces- 
sary to check the i = 3 case, and Equation 2 must now be used. The evaluation of Equation 
2 proceeds as follows. 

i = 1: Check if C: + B1 < T1. Since 4 + 8 < 12, task tj is schedulable. 

i = 2: Check whether either of the following two inequalities hold: 

(k,l) 

(1,1)      C1+C2 + B2^T1 4 + 4 + 8>12 
(2,1)      2C1+C2 + B2<T1 8 + 4 + 8<20 

The inequality for (k, I) = (2, 1) holds and therefore, T2 is schedulable. 
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i = 3: Check whether any of the following inequalities hold: 

IkJl 

(1.1) C^+2C2 + C3 + B3JST! 4 + 8 + 8 + 0^12 
(1.2) 2C, + 2C2 + C3 + B3 <, 2^ 8 + 8 + 8 + 0<24 
(2, 1) 2C, + C2 + C3 + B3 < 8T2 8 + 4 + 8 + 0 < 20 
(3,1) 3C1 + 2C2 + C3 + B3 < 8T2 12 + 8 + 8 + 0<32 

Since all the inequalities except (k, I) = (1, 1) hold, x3 is schedulable. Note that it would have 
been sufficient to stop checking after finding one inequality that holds for each value of i; all 
the inequalities are listed here for completeness only. 
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5. Summary and Conclusions 
This paper described the Sporadic Server (SS) algorithm, a general algorithm for scheduling 
soft and hard deadline aperiodic tasks in real-time systems. The SS algorithm creates a 
server with a given period and utilization. The server maintains its utilization until it is 
needed by an aperiodic task and replenishes any consumed utilization in a sporadic manner 
based upon when the utilization is consumed. For soft deadline aperiodic tasks, a high pri- 
ority sporadic server is created that is shared by the soft deadline aperiodic tasks. For hard 
deadline aperiodic tasks (sporadic tasks), an individual sporadic server is dedicated to each 
hard deadline aperiodic task to guarantee that its deadline will always be met. 

The SS algorithm was shown to have the low implementation complexity advantage of the 
Deferrable Server (DS) algorithm and the server size advantage of the Priority Exchange 
(PE) algorithm. The SS algorithm also provides a response time performance for soft dead- 
line aperiodic tasks that is comparable to that attainable with either the DS or PE algorithms. 
In terms of schedulability, it was shown that a sporadic server can be treated as a periodic 
task having the same period and execution time. For short deadline sporadic tasks, it was 
also shown that the SS algorithm can guarantee their deadlines by using a deadline 
monotonic priority assignment rather than a rate monotonic priority assignment. Finally, it 
was shown that the schedulability analysis formulas developed for the priority ceiling 
protocols can be used to determine the schedulability of deadline monotonic sporadic ser- 
vers. 
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